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Abstract—As CPU performance cannot keep up with the
dramatic growth of the past few decades, CPU architects turn to
domain-specific architectures to accelerate certain tasks. A recent
trend is the introduction of matrix-multiplication accelerators to
CPUs by manufacturers such as IBM, Intel and ARM, some of
them yet to launch commercially. Apple’s systems-on-chip (SoCs)
for its mobile phones, tablets and personal computers include a
proprietary, undocumented CPU-coupled matrix multiplication
coprocessor called AMX. We leverage AMX to accelerate the
post-quantum lattice-based cryptosystems Saber and FrodoKEM,
and benchmark their performance on Apple M1 and M3 SoCs.
We propose a variant of the Toeplitz Matrix-Vector Product
algorithm for polynomial multiplication, which sets new speed
records for Saber using AMX, improving up to 20% for the main
KEM operations, and 152% for matrix-vector multiplication of
polynomials, over the current state-of-the-art. We also set new
FrodoKEM speed records using AMX, gaining up to 21% for
the main KEM operations and 124% for matrix multiplication
(with further improvements for 4×-batching), over our optimized
NEON implementation, also introduced here, which already
improves upon the previous state-of-the-art for ARMv8 CPUs.

Index Terms—Post-quantum cryptography, AMX, ARM,
NEON, FrodoKEM, Saber

I. INTRODUCTION

Quantum computers pose a threat to cryptosystems whose
security relies on the presumed hardness of computational
problems such as integer factoring and discrete logarithms.
Post-quantum cryptography (PQC) refers to cryptosystems that
remain secure against attacks employing quantum and classical
computers. In 2017, the National Institute of Standards and
Technology (NIST) called for a PQC standardization process;
3 out of 4 selected candidates for standardization are lattice-
based. Saber [1] and FrodoKEM [2] are lattice-based Key
Encapsulation Mechanisms that reached round 3 in the stan-
dardization process; the latter is recommended by the German
BSI [3] and is being considered for standardization by ISO [4].

The performance bottlenecks of lattice-based cryptography
usually lie in polynomial/matrix multiplication and symmetric-
cryptography operations, prompting extensive research efforts
to enhance their efficiency. Various manufacturers have de-
veloped high-performance AI accelerators, such as NVIDIA’s
tensor cores [5], Intel’s Advanced Matrix Extensions (AMX)

[6] and ARMv9-A’s Scalable Matrix Extensions (SME) [7], to
cater to the high demands of AI applications. Apple’s AMX
(unrelated to Intel’s) is an undocumented coprocessor found
in its SoCs, starting with the 2019’s A13 [8, §7.6], which we
apply to Saber and FrodoKEM in this work.

A. Related works

Many studies target GPU cores, achieving high throughput
via huge batching levels, but compromising latency. Gazzoni
Filho et al. [9] presented the first cryptographic implementa-
tion on a CPU-linked matrix multiplication accelerator, setting
new NTRU speed records using Apple’s AMX coprocessor on
M1/M3 SoCs, beating state-of-the-art NEON implementations
with low latency, no batching and running in constant time.

Becker et al. [10] set the current speed record for Saber [1]
on ARMv8-A using O(n log n) Number Theoretical Trans-
form (NTT) methods combined with a novel “Barrett mul-
tiplication” algorithm for modular multiplication, achieving
a speedup of 56% over the previous state-of-the-art on the
Apple M1. We also remark the work in [11], which introduced
innovative Toeplitz Matrix-Vector Product (TMVP) formulas,
with the “four-way” formula standing out as the best non-NTT-
like multiplication algorithm for Saber’s ring on Cortex-M4.

The state-of-the-art implementation for FrodoKEM [2] is
the work of Bos et al. [12], which improves matrix multipli-
cation through a row-wise blocking and packing approach, and
also proved that Strassen’s algorithm improves throughput for
use cases with high batching levels. An ARMv8 implementa-
tion using NEON was presented shortly after in [13], claiming
a speedup of 10.22× at the protocol level. However, they do
not acknowledge the improvements of [12] which, while not
ARM-specific, appear to be superior on M1 and M3.1

B. Our contributions

We present an AMX implementation of Saber, adapting the
techniques from [9] and modifying the TMVP method of [14]
to benefit from batched products. Note that the improved

1The implementation of [13] is not publicly available and the authors could
not be reached for clarification. Our benchmarks of §V show speedups for [12]
that exceed those reported by [13] for their implementation.



TMVP formulas from [11] require more matrix multiplications
but of a smaller size, but for AMX even the original formulas
underutilize the throughput and there is no clear benefit from
smaller matrices. Therefore, we focus only on the original
TMVP formulas of [14] and increase throughput by batching.
This sets new speed records on Apple M1 and M3, with
speedups of up to 13% at the protocol level and 151% for
polynomial operations.

For FrodoKEM, we introduce a new NEON implementation
of our own to use as a baseline, which already sets new speed
records on the M1/M3. We then present our AMX implemen-
tation, which improves further on our NEON record. Both im-
plementations explore possible matrix multiplication strategies
and use a novel technique for generating FrodoKEM-AES’s A
matrix. We make an innovative use of AMX’s unique genlut
instruction to perform Gaussian sampling, improving it by up
to 418% versus a NEON implementation. This might be of
particular interest for other applications. Compared to the state
of the art, we improve on the M1 and M3 by up to 21% at
the protocol level and 124% for matrix multiplication. Then,
we develop 4×-batched NEON and AMX implementations,
showing that AMX is significantly faster than NEON, by up to
91% at the protocol level and 708% for matrix multiplication.

Our code is available under an open source CC0 license at
https://github.com/dgazzoni/PQC-AMX.

II. PRELIMINARIES

A public-key encryption scheme (PKE) is a tuple of algo-
rithms (KeyGen,Enc,Dec). KeyGen generates a public key
pk and a secret key sk. Enc outputs a ciphertext c given pk
and a message m. Dec outputs a message m′ from sk and c. A
key encapsulation mechanism (KEM) is a tuple of algorithms
(KeyGen,Encaps,Decaps). KeyGen generates a public
key pk and a secret key sk. Encaps outputs a shared key
ss and a ciphertext c given pk. Decaps outputs a shared key
ss′ from sk and c. We present next KEMs obtained from PKEs
via a variant of the Fujisaki-Okamoto transform; we only show
PKE algorithms, which are the target of our optimizations.

Bold lower case denotes vectors and bold upper case denotes
matrices. We write v[i : j : k] for a matrix/vector slice of
coefficients i, i+j, i+2j, . . . , i+k; j = 1 if omitted. Sampling
from a uniform distribution over a set S is denoted x← U(S).

A. Saber

Saber [1] is a lattice-based KEM relying on the hardness of
Module Learning With Rounding. Its NIST submission spec-
ifies the parameter sets below for security levels 1, 3, and 5.

Parameter set Sec. level l n q p T µ
LightSaber 1 2 256 213 210 23 10

Saber 3 3 256 213 210 24 8
FireSaber 5 4 256 213 210 26 6

Saber works over Rq := Zq[X]/(Xn + 1) and employs the
binomial distribution centered at µ, denoted βµ, hash functions
F ,G,H, and a function gen to generate a pseudorandom
matrix from a seed. q, p and T are powers of 2 with exponents

εq, εp, εT ∈ Z, resp. Let s ← βµ(Rlq; r) denote sampling
each coordinate of a vector s ∈ Rlq pseudorandomly from
the distribution βµ(Rq) with seed r. Algorithms II.1, II.3 and
II.2 are a verbatim reproduction of Saber’s PKE specification.

Algorithm II.1
Saber.PKE.KeyGen()

Input: None
Output: Key pair (pk, sk)
1: seedA ← U({0, 1}256)
2: A← gen(seedA) ∈ Rl×lq

3: r ← U({0, 1}256)
4: s← βµ(R

l×1
q ; r)

5: b← ((ATs+h) mod q)� (εq−
εp) ∈ Rl×1

p

6: return (pk := (seedA,b), sk :=
s)

Algorithm II.2
Saber.PKE.Dec(sk, c)

Input: Secret key sk, ciphertext c
Output: Message m′

1: v ← b′T(s mod p) ∈ Rp
2: m′ ← ((v − 2εp−εT cm +
h2) mod p)� (εp − 1) ∈ R2

3: return m′

Algorithm II.3
Saber.PKE.Enc(pk,m; r)

Input: Public key pk, message m ∈ R2,
optional randomness r

Output: Ciphertext c
1: A← gen(seedA) ∈ Rl×lq

2: if r is not specified then
3: r ← U({0, 1}256)
4: s′ ← βµ(R

l×1
q ; r)

5: b′ ← ((As′ + h) mod q) �
(εq − εp) ∈ Rl×1

p

6: v′ ← bT(s′ mod p) ∈ Rp
7: cm ← (v′ + h1 − 2εp−1m mod
p)� (εp − εT ) ∈ RT

8: return c := (cm,b
′)

B. FrodoKEM

FrodoKEM [2] is a lattice-based KEM that relies on the
hardness of Learning With Errors. The submission to NIST
specifies the parameters as in the table below.

Parameter set Sec. level n q m = n lA lSE

Frodo-640 1 640 215 8 128 128
Frodo-976 3 976 216 8 128 192

Frodo-1344 5 1344 216 8 128 256

FrodoKEM uses functions Gen(s), to generate a pseudo-
random matrix A ∈ Zn×nq from a seed s of length lA (using
AES or SHAKE), and SM(r, s, t) for inversion sampling of a
matrix in Zs×tq using a pseudorandom array of 16-bit integers
r and a precomputed table Tχ for error distribution χ. Let SK
denote SHAKE. The PKE is specified by Algs. II.4, II.6, II.5.

C. The AMX coprocessor

AMX is a matrix multiplication coprocessor found in Apple
SoCs. It lacks official documentation, so we turn to the reverse
engineering efforts of [15]–[17]. We briefly review some
concepts and refer to them for more details, as well as the
description in [9], on which our algorithmic notation is based.

AMX’s register file is comprised of 80 64-byte registers: 16
input registers, split as 8 X and 8 Y registers, and 64 output Z
registers viewed as rows of a matrix, as depicted in Figure 1.
Some instructions can address X and Y registers bytewise
as 512-byte circular buffers. AMX instructions are encoded
within a reserved opcode space of A64; once no longer
speculative, the CPU forwards them to the AMX coprocessor.

Data transfer between the CPU is AMX is done solely
through memory, using load (ldx, ldy, ldz) and store (stx,
sty, stz) instructions. extrh and extrv move rows and
columns, respectively, of Z to X or Y registers.



Algorithm II.4
FrodoPKE.KeyGen()

Input: None
Output: Key pair (pk, sk)
1: seedA ← U({0, 1}lA )
2: A← Gen(seedA)
3: seedSE ← U({0, 1}lSE )
4: r← SK(0x5F||seedSE,2nn · 16)
5: ST ← SM(r[0 : nn− 1], n, n)
6: E← SM(r[nn : 2nn− 1], n, n)
7: B = AS + E
8: return (pk := (seedA,B), sk :=

ST)

Algorithm II.5
FrodoPKE.Dec(sk, c)

Input: Secret key sk, ciphertext c
Output: Message m′
1: M = C2 −C1S
2: return m′ := Decode(M)

Algorithm II.6
FrodoPKE.Enc(pk,m)

Input: Public key pk, message m
Output: Ciphertext c
1: A← Gen(seedA)
2: seedSE ← U({0, 1}lSE )
3: r ← SK(0x96||seedSE,(2mn +
mn) · 16)

4: S′ ← SM(r[0 : mn− 1],m, n)
5: E′ ← SM(r[mn : 2mn −

1],m, n)
6: E′′ ← SM(r[2mn : 2mn +
mn− 1],m, n)

7: B′ = S′A + E′;V = S′B + E′′

8: return c := (C1,C2) = (B′,V+
Encode(m))

X[0] · · · X[n]

Y[0] Z[0][0] += Y[0]X[0] · · · Z[0][n] += Y[0]X[n]

Y[1] Z[1][0] += Y[1]X[0] · · · Z[1][n] += Y[1]X[n]
...

...
. . .

...
Y[n] Z[n][0] += Y[n]X[0] · · · Z[n][n] += Y[n]X[n]

Fig. 1. AMX register file organization.

The vector-mode mac16 and vecint instructions realize
vector operations such as addition + and the Hadamard
(pointwise) product ◦. Outer product of a column by a row
vector (the BLAS Level-2 rank-1 update operation xGER) is
realized by the matrix-mode mac16 and matint instructions.
For 16-bit integers, vectors (or matrix rows/columns) are up to
32 elements long; each instruction’s enable modes can mask
part of the computation if smaller sizes are needed.

We illustrate the notation with AMX’s primary application,
matrix multiplication (in our case, 32×32 matrices with 16-bit
integer data), in Algorithm II.7. It is also a basic block, with
suitable modifications, for our Saber and FrodoKEM AMX
implementations. If AT rather than A is input to the algorithm,
we eschew the transposition by removing lines 1 and 2, and
replacing line 4 with a load of the i-th row of A.

Algorithm II.7 MATMULADD(A,B): Compute
Z[0 : 2 : 62]← Z[0 : 2 : 62] + AB using AMX.

Input: A,B ∈ Z32×32
216 in row-major memory layout.

Output: Z[0 : 2 : 62] + AB ∈ Z32×32
216 in even Z registers.

1: for i = 0 to 31 do . Load A to odd Z rows
2: Z[2i+ 1]← ldz(A[i][0 : 31])

3: for i = 0 to 31 do
4: Y0 ← extrv(Z[1 : 2 : 63][i]) . A transpose step
5: X0 ← ldx(B[i][0 : 31])
6: Z[0 : 2 : 62]← mac16(Z[0 : 2 : 62] + YT

0X0)

We also review the genlut instruction, which is instru-

mental to our table-based sampling technique of §IV-D. It
has two distinct modes, generate and lookup. The latter is
similar to NEON’s TBL instruction: given an input register
with a densely packed array of lane indices (in a format fully
described in [17]) and another register containing a table, it
performs a table lookup operation; in 16-bit mode, registers are
32 elements wide. The generate mode is especially interesting,
and unlike any CPU instruction we are familiar with. It takes a
table T and source register V as input, and generates a packed
array of lane indices, in the format used by lookup mode, by
searching for the minimum index i− 1 such that T [i] > V [l],
for each lane l of the source. If T is sorted in ascending order,
genlut returns i such that T [i] ≤ V [l] < T [i+ 1].

We refer to [9] for performance characteristics of AMX;
the main improvement reported for M3 is that some vector
operations can dual-issue, while M1 is strictly single-issue.

III. SABER ON AMX

We now discuss AMX-accelerated multiplication in
Z216 [X]/(Xn + 1), which is Saber’s main algorithmic task.

A. Baseline implementation

An AMX-based algorithm was previously proposed in [9]
for multiplication in Z216 [X]/(Xn − 1), which is identical
to the multiplication in Z216 [X]/(Xn+1), except for flipping
signs of terms with powers greater than n−1 in the reduction.
We achieve this via vecint and matint instructions, which
generalize vector- and matrix-mode mac16 (respectively) with
accumulation by either adding or subtracting. We refer to [9]
for more on the techniques, and only mention the key changes
needed to adapt its POLYMODMUL algorithm to Saber:
• Replacing the mac16 instruction in line 9 of the ACCU-

MULATEOUTERPRODUCTSREDUCTION subroutine by
matint using accumulation by subtraction.

• Modifying the vecint instructions in lines 8 and 13
of the MERGEFIRSTANDLASTBLOCKS subroutine to
perform accumulation by subtraction.

Inner products of polynomials
∑l−1
k=0 a

(k)(x)b(k)(x) can
be computed naı̈vely by l POLYMODMUL calls; for each k
and each 32-coefficient slice of the output polynomial, AC-
CUMULATEOUTERPRODUCTSREDUCTION sums terms of the
form b

(k)T
j a

(k)
i . We propose accumulating

∑l−1
k=0 b

(k)T
j a

(k)
i

instead, lazily applying POLYMODMUL’s vector operations
(shifts and flattenings) for a factor-l increase in the key AMX
performance metric (matrix/vector operation ratio).

Encryption and key generation multiply an l× l polynomial
matrix A by an l×1 polynomial vector s; we compute these as
inner products between rows of A and s. This is followed by
element-wise addition of a constant polynomial h and right-
shifting by a constant εq − εp. Both tasks can be accelerated
by AMX, by loading h to the Z registers before accumulating
the matrix-vector product and using a specific ALU mode of
vecint for shifting (see Algorithm III.3 for an example of
how these steps are incorporated). In Saber’s specification, all
coefficients of h are identical, so they can be distributed to all
Z registers with a single mac16 instruction.



B. TMVP-based implementation

We now present a second method for polynomial multi-
plication, based on the Toeplitz matrix-vector product, which
has the option of accumulating to the Z registers the batched
multiplication of a single polynomial b(x) by multiple polyno-
mials a(l)(x). This has potential to improve the matrix-vector
products in Saber’s encryption and key generation which,
using LightSaber (l = 2) as an example, can be written as

As =

(
A00 A01

A10 A11

)(
s0
s1

)
= s0

(
A00

A10

)
+ s1

(
A01

A11

)
, (1)

so that multiplications are performed in two batches of two
with the additions coming free by accumulation in Z registers.

In the TMVP approach, the coefficients for a single product
c(x) := a(x)b(x) are computed as

c0
c1
c2
...

cn−1

 =


b0 −bn−1 −bn−2 · · · −b1
b1 b0 −bn−1 · · · −b2
qb2 b1 b0 · · · −b3

...
...

...
. . .

...
bn−1 bn−2 bn−3 · · · b0




a0
a1
a2
...

an−1

,

which we denote c = Ma. We represent the batched products
by promoting c and a to matrices, with one column per a(l)(x),
a trick first used in the CUDA implementation from [18]. For
the remainder, we fix n = 256 and assume for illustration
purposes that only two multiplications are batched (this will
be the case in LightSaber). By splitting M into 32×32 blocks
and each of the c(l),a(l) into 32× 1 blocks, we get

C
(0)
0 C

(1)
0

C
(0)
1 C

(1)
1

...
...

C
(0)
7 C

(1)
7

 =


B0 −B7 · · · −B2 −B1

B1 B0 · · · −B3 −B2

...
...

. . .
...

...
B7 B6 · · · B1 B0



A

(0)
0 A

(1)
0

A
(0)
1 A

(1)
1

...
...

A
(0)
7 A

(1)
7

,
and by exploiting the Toeplitz (more precisely, skew-circulant)
property retained by the Bi, this can be rearranged to(

C
(0)
0 C

(1)
0 C

(0)
1 C

(1)
1 · · · C

(0)
7 C

(1)
7

)
=

B0

(
A

(0)
0 A

(1)
0 A

(0)
1 A

(1)
1 . . . A

(0)
7 A

(1)
7

)
+B1

(
−A(0)

7 −A(1)
7 A

(0)
0 A

(1)
0 . . . A

(0)
6 A

(1)
6

)
...

+B7

(
−A(0)

1 −A(1)
1 −A(0)

2 −A(1)
2 . . . A

(0)
0 A

(1)
0

)
(2)

which we denote
∑7
i=0BiAi, defining the 32 × 16 matrices

in parentheses as Ai. Note that each Ai can be obtained from
different 16-element-wide slices of the 32× 30 matrix

A :=
(
−A(0)

1 −A(1)
1 · · · −A(0)

7 −A(1)
7 A

(0)
0 A

(1)
0 · · · A

(0)
7 A

(1)
7

)
. (3)

Algorithm III.1 stores the transpose of this matrix (since it is
more efficient to load coefficient slices into rows) to the 30
largest odd-numbered Z registers. Likewise, the Bi matrices
for i = 0 and i > 0 are given respectively by

B0 =


b0 −b255 · · · −b225
b1 b0 · · · −b226
...

...
. . .

...
b31 b30 · · · b0

 , Bi =


b32i b32i−1 · · · b32i−31
b32i+1 b32i · · · b32i−30

...
...

. . .
...

b32i+31 b32i+30 · · · b32i

 ,

so every column of every matrix can be obtained from a 32-
element-tall slice of the 287-element column vector(

−b225 −b226 · · · −b255 b0 b1 · · · b255
)T
.

Note that all but the negative terms (used only for B0) fit in
the X registers, so we load only (b0 · · · b255) to those registers
and replace b224, . . . , b255 by their negated version as needed.

Our algorithm works with the transpose of (2), so output
coefficients can be stored to memory in the natural row-major
layout; thus, we compute

∑7
i=0AT

i B
T
i =

∑7
i=0

∑31
j=0AT

i [:

, j]BT
i [j, :]. Here, AT

i [:, j]BT
i [j, :] corresponds to the outer

product of X[32i−j : 32i−j+31] and Z[33−4i : 2 : 63−4i][j]
(with the latter obtainable via an extrv instruction). The
resulting algorithm is presented as Algorithm III.2.

Remark 1: It is straightforward to generalize the method in
this section to the case of batching l polynomial multiplica-
tions of b(x) by a(0)(x), . . . , a(l−1)(x); the Bi remain the
same whereas the Ai become matrices of dimension 32× 8l.
The outer products grow to size 32 × 8l and can still be
computed with a single mac16 instruction as long as l ≤ 4
(which covers all Saber parameter sets). Meanwhile, the matrix
AT becomes of size 15l × 32, so it is no longer possible to
store it in one half of the Z registers for l > 2. Instead, one can
modify Algorithm III.1 and Algorithm III.2 to spill and reload
rows of AT on demand using an external array, introducing
some overhead due to AMX loads and stores.

Algorithm III.3 covers the entire computation of (As +
h)� (εq − εp) for LightSaber, with straightforward general-
izations for Saber (l = 3) and FireSaber (l = 4) per Remark 1.

Algorithm III.1 PREPAREMATRIXA(a(0),a(1)): Loads AT

from equation (3) to odd Z registers.

Input: a(0) and a(1) (arrays of 256 coefficients each)
Output: Loads −a(l)32i:32i+31 to Z[2(2i+l)+1] for 0 < i ≤

7, and a(l)32i:32i to Z[2(2i+l+16)+1] for 0 ≤ i ≤ 7
1: Y0 ← ldy([−1, . . . ,−1])
2: for l = 0 to 1 do
3: for i = 0 to 7 do
4: Z [2(2i+ l + 16) + 1]← ldz(a(l)[32i : 32i+31])
5: X0 ← ldx(a(l)[32i : 32i+ 31])
6: Z [2(2i+ l) + 1]← mac16(X0 ◦ Y0)

IV. FRODOKEM ON NEON AND AMX
In this section, we discuss implementation techniques to

speed up FrodoKEM using NEON, and then our AMX imple-
mentation which achieves further significant speedups.

A. NEON optimizations

The main improvements in our NEON implementation come
from (i) refining the generation of the matrix A in the AES
variant and (ii) a careful loop order for matrix multiplication.

The reference implementation initializes the “plaintext” for
A in a first pass and encrypts it with AES in a second pass.
We do it in a single pass, generating the “plaintext” in NEON
registers and encrypting with ARMv8 AES instructions.



Algorithm III.2 POLYMODMULTMVP(a(0),a(1),b): Mul-
tiplication in Z216 [X]/(X256 + 1) of a polynomial b by two
polynomials a(l) using AMX.

Input: b, a(0), a(1) (arrays of 256 coefficients)
Output: Accumulates to Z[0 : 2 : 30] the coefficients for

c(l)(x) = a(l)(x)b(x), mapping c(l)32j:32j+31 to Z[4j + 2l].
1: X0, . . . ,X7 ← ldx(b[0 : 31]), . . . ,ldx(b[224 : 255])
2: tmp← stz(mac16(X7 ◦ [−1, . . . ,−1]))
3: PrepareMatrixA(a(0),a(1)) . load AT to odd Z
4: for j = 0 to 31 do
5: Y0 ← extrv(Z[1 : 2 : 63][j]) . extract AT[:][j]
6: for i = 0 to 7 do
7: if i == 0: X7 ← tmp . negate [b224, . . . , b255]
8: Z[0 : 2 : 30]← mac16(Z[0 : 2 : 30] + Y[16− 2i :

31− 2i]TX[32i− j : 32i− j + 31])
9: if i == 0: X7 ← ldx(b[224 : 255]) . restore

Algorithm III.3 SABERMATVECMULTMVP(c,A,b,h, ε):
Computes (Ab + h) � ε in Z216 [X]/(X256 + 1), shifting
coefficient-wise, for A a 2 × 2 polynomial matrix and b,h
2× 1 polynomial vectors with all coefficients in h equal.
Input: h (repeating coefficient of h), b (2 × 256 coefficient

array), A (2× 2× 256 coefficient array), ε (integer).
Output: c (array of 256 coefficients for the result)

1: Z[0 : 2 : 62]← mac16(ldx([h, h, . . . , h])) . copies of h
2: for i = 0, 1: POLYMODMULTMVP(b[i],A[0][i],A[1][i])
3: for i = 0, 1 and j = 0, . . . , 7 do
4: c[i][32j : 32j+31]← stz(vecint(Z[4j+2i]� ε))

Let U and V be matrices of size m × n and n × p,
respectively. Then, ti,j =

∑n
k=1 ui,kvk,j is the entry in row

i and column j of T = UV. Thus, computing T requires
three nested for loops, iterating through the values of i, j
and k. Although the order of the loops is arbitrary, data
access patterns differ. After evaluating all loop orders, we
implemented the one maximizing arithmetic intensity for each
of FrodoKEM’s matrix multiplication routines. Performance
counters show that our choices below yield >90% ALU usage.

Implementation Operation
AS+E S′A+E B′S S′B+E

Reference ijk jik ijk ijk
Optimized ijk kij ijk ijk

NEON ijk kji ikj kij

Also, for a potential doubling in throughput on the M1 and
M3, we employ multiply-accumulate instructions instead of
separate multiplication and addition instructions as in [13].

B. Matrix multiplication on AMX

We focus on the computations AS+E and S′A+E′, where
A has size n× n, S,E have size n× n̄ and S′,E′ have size
n̄× n. For both multiplications, AS and S′A, the main idea
is to load A and S (or S′) into the X and Y input registers,

and compute multiply-accumulates to the Z output registers.
By initializing Z with E or E′, we obtain addition “for free”.

In AMX, the natural size of matrices for multiplication is
up to 32 × 32. So, AS and S′A are computed via block
matrix multiplication. We decompose A into 32× 32 blocks,
S into 32 × 8 blocks and S′ into 8 × 32 blocks. However,
one of the dimensions being < 32 is sub-optimal since the
remaining 24 rows/columns are masked out, but mac16 does
not appear to execute any faster. This wasted computational
power is reclaimed through batching in §IV-C. For Frodo-976,
32 - n, so part of the computation for blocks at the edges is
masked out, thus behaving as if they were padded with zeros.

Recall that AMX multiplies matrices via outer products of
vectors. To compute AS, we read blocks of A by columns
and S by rows. A and ST are generated in row-major order
by Algorithm II.4 (lines 2 and 5); thus, S is in column-major
order, and we must transpose both A and ST . For S′A, both
matrices are generated in row-major order by Algorithm II.6
(lines 1 and 4). Thus, we transpose S′ only.

We report on transposition strategies that performed best
among all that we tried. For AS, we first transpose the full ST

directly in C (which the compiler autovectorizes to NEON),
while A is transposed online with AMX during multiplication
(as in Algorithm II.7), after generating 32 rows with our one-
pass strategy of §IV-A; this is shown in Algorithm IV.1. For
S′A, AMX transposition of A also performs best.

Algorithm IV.1 FRODO-AS-PLUS-E-32ROWS(C,Ā,ST,E,r):
Computes rows r, . . . , r + 31 of C ← AS + E; Ā is the
submatrix of A containing rows r, . . . , r + 31.

Input: Ā ∈ Z32×n
216 ; ST,E ∈ Zn×n216 ; r ∈ {0, 32, . . . , n− 32}

Output: C ∈ Zn×n216 with rows r, . . . , r + 31 updated.
1: Load E[r : r + 31] to Z[0 : 2 : 62]
2: for j0 = 0, 32, 64, . . . , n− 32 do
3: Load ST[j0][0 : 7] || . . . || ST[j0 + 31][0 : 7] to X
4: Load Ā[0 : 31][j0 : j0 + 31] to Z[1 : 2 : 63]
5: for j = 0, . . . , 31 do
6: Y0 ← extrv(Z[1 : 2 : 63][i])
7: Z[0 : 2 : 62][0 : 7] ← mac16(Z[0 : 2 : 62][0 :

7] + YT0 X[8j : 8j + 7])

8: Store Z[0 : 2 : 62] to C[r : r + 31]

C. Use of batching

AMX’s throughput is underutilized with single KEM oper-
ations as above. We overcome this by introducing an alternate
API that batches KEM operations with the same (sk, pk) pair,
i.e., batching multiplications with the same A. Thus, it applies
to encapsulation and decapsulation (which compute S′A) but
not to key generation (which computes AS).

Batch S′A + E computation reuses the strategy of §IV-B,
except we do 4 computations at once. Recall that A has size
n × n while S′ and E have size 8 × n. We vertically stack
four S′ or E matrices to get 32×n matrices, thus fully using
AMX’s processing power. The ALUs are nearly saturated



in our NEON implementation (see §IV-A), so batching is
implemented straightforwardly (a loop over the 4 copies).

Calculation of S′B+E′′ and B′S, without batching, yields
small 8 × 8 matrices, too small for profitable use of AMX.
With batching, one dimension grows to 32, as in AS+E and
S′A, justifying the use of AMX. For S′B + E′′, we perform
the single needed transpose online during multiplication as in
S′A+E; for B′S, which needs two transposes (as S is stored
transposed in sk), we did not achieve a speedup.

D. Gaussian sampling using the AMX genlut instruction

We present a novel technique for inversion sampling, ap-
plied to FrodoKEM Gaussian sampling. At its core is the use
of AMX’s genlut instruction in generate mode (see §II-C)
to perform parallel search on 32 16-bit source values. Its use is
straightforward for distributions with non-negative support and
tables of ≤ 31 elements, and full support if the table fits an X
or Y register and inputs use two’s complement representation.
The former condition is met by all parameter sets, but for the
latter, an incompatible representation (sign-magnitude with the
sign given by the least-significant bit) is prescribed. Thus, we
must condition the inputs, at some performance cost.

In lieu of actual two’s complement representation, we place
the sign at the most significant bit by right-rotating each input
(lines 4 and 5 of Algorithm IV.2), and adapt the Tχ tables to
work with this format. The algorithm specified in [2] uses a
table for the non-negative support only, and applies the sign
bit to the output. We avoid separate application of the sign bit
in AMX by using two shifted copies of the table. These fit
in the table register since the largest Tχ (for Frodo-640) has
j + 1 = 13 elements. Concretely, if Tχ = [t0, t1, . . . , tj ] is
the original table, we map it to the genlut-specific table

T′χ = [0, t0 + 1, . . . , tj + 1, t0 + 215 + 1, . . . , tj + 215 + 1].

Finally, genlut in generate mode outputs a densely packed
representation (20 bytes representing the results of 32 parallel
searches). The remainder of the FrodoKEM code expects the
usual 16 bits per element representation. We use genlut in
lookup mode to map results to the range [−j, j], in accordance
with our choice of T′χ. The 32-element mapping is given by

ι = [0, 1, . . . , j, 0,−1, . . . ,−j,−j, . . . ,−j].

We display this procedure as Algorithm IV.2.

V. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup, report
and analyze performance results, and report on experiments on
the constant-time execution of AMX’s genlut instruction.

A. Experimental setup

We benchmark on Apple laptops (a 2020 MacBook Air
with M1 SoC and a 2023 MacBook Pro with M3 Max SoC),
running macOS 14 and version 15 of Apple’s clang compiler.

As in [9], we explore distinct array allocation strategies. In
the usual stack allocation, neighboring variables of a function
are very likely allocated in the same memory page, risking

Algorithm IV.2 SAMPLEMATRIX(s,T′χ, ι): si ← T′χ[si] for
0 ≤ i < n · n.
Input: s ∈ Zn×n216 (uniform samples); T′χ, ι ∈ Z32

216 (as above).
Output: s ∈ Zn×n216 (Gaussian samples)

1: Y0,Y1,Y2 ← ldy(T′χ),ldy(ι),ldy([215, . . . , 215])
2: for i = 0, 32, 64, . . . , n ·n− 32 do . Process 32 elements
3: X0 ← ldx(s[i : i+ 31])
4: Z[0]← vecint(X0 ◦ Y2)
5: Z[0]← vecint(Z[0] + X0 � 1)
6: X[0]← extrh(Z[0])
7: X0 ← genlut(mode = gen, src = X0, tbl = Y0)
8: X0 ← genlut(mode = lookup, src = X0, tbl = Y1)
9: s[i : i+ 31]← stx(X0)

concurrent CPU and AMX accesses, which cause performance
degradation. The POSIX mmap() function returns new mem-
ory pages for each allocation, sidestepping this issue.

As symmetric operations make up the bulk of execution
time in Saber and FrodoKEM, we use fast implementations
of SHAKE, AES and NIST’s randombytes() function, of
ARMv8’s Cryptographic Extensions. We use the 2×-batched
SHAKE implementation of Becker et al. [10], and modify their
unbatched SHAKE code to use ARMv8’s SHA-3 instructions.
We implement AES-ECB (for FrodoKEM) and AES-CTR-
DRBG (for randombytes()), ensuring outputs match with
existing implementations.

We use the macOS cycle counting code of [19], and report
an average of 1024 executions for each measurement.

B. Performance results

We report Saber and FrodoKEM performance data for KEM
operations and specific subroutines accelerated by AMX. For
memory allocation strategies (stack or mmap()), we pick the
fastest for each individual measurement and display it through
the background color of each table cell: light gray for stack,
white for mmap(). We compute speedups as ratios between
the previous state-of-the-art implementation and our AMX
one; for FrodoKEM, we compare our NEON implementation
to the previous state-of-the-art, and our AMX implementation
to the fastest CPU implementation (usually, our NEON one).

Saber results are shown in Table I. “MVMR” refers to
matrix-vector multiplication of polynomials with rounding.
NIST levels 1, 3 and 5 map to LightSaber, Saber and FireSaber
parameter sets, respectively. FrodoKEM results without batch-
ing are shown in Table II, and with 4× batching in Table III.
We benchmark KEM operations as well as matrix operations
AS + E and S′A + E. The “full” subheading includes the
cost of generating matrix A, while “mat. mul.” does not.

In lieu of a full discussion, we highlight the main takeaways:
• Most of the cost in both schemes is for symmetric opera-

tions, which use the same implementation everywhere.
Amdahl’s law bounds gains due to polynomial/matrix
multiplication; results should be viewed in that context.

• An analysis of our full dataset shows that only Saber
AMX implementations consistently favor mmap() mem-



Sec
lvl Work

Operation
Key gen. Encaps. Decaps. MVMR

M1 M3 M1 M3 M1 M3 M1 M3

1
[10] 19.0 18.9 26.1 26.0 25.6 25.4 4.02 3.96

III-A 17.5 17.3 23.9 23.6 22.4 22.0 2.47 2.22
III-B 17.2 17.2 23.5 23.4 22.1 21.9 2.37 2.32

Speedup(×) 1.10 1.10 1.11 1.11 1.16 1.16 1.69 1.78

3
[10] 31.3 31.2 40.1 40.0 40.4 40.1 7.60 7.52

III-A 29.2 28.6 36.6 36.0 35.5 34.7 4.46 4.10
III-B 28.3 28.2 35.1 35.1 34.1 33.8 3.66 3.62

Speedup(×) 1.11 1.11 1.14 1.14 1.18 1.18 2.08 2.08

5
[10] 48.3 48.2 59.4 59.3 59.8 59.6 12.3 12.2

III-A 44.8 44.2 54.1 53.5 52.4 51.7 6.95 6.46
III-B 42.8 42.7 51.6 51.4 49.9 49.6 4.92 4.83

Speedup(×) 1.13 1.13 1.15 1.15 1.20 1.20 2.50 2.52

TABLE I
SABER PERFORMANCE IN KILOCYCLES, COMPARING THE

IMPLEMENTATION OF [10] TO THE ALGORITHMS OF SEC. III-A AND III-B.

ory allocation (geometric mean over KEM operations
and security levels: 13% and 4% faster on M1 and M3,
respectively); all other implementations show < 1% mean
difference between stack and mmap(). The FrodoKEM
AMX implementation is also unaffected, likely due to its
use of large matrices, spanning multiple memory pages.

• Both Saber AMX implementations outperform that of
[10], despite replacing NEON’s O(n log n) NTT methods
by schoolbook (O(n2)); the implementation of §III-B is
faster than that of §III-A. KEM operations are sped up by
10% to 20%, and matrix-vector multiplication of polyno-
mials by 69% to 152%; gains rise with the parameter l
due to better utilization of AMX, per Remark 1. Decapsu-
lation gains are pronounced as it performs reencryption.

• FrodoKEM’s optimized implementation [12] is up to ≈
15× faster than the reference one, reinforcing our belief
that it is on par or faster than that of Kwon et al. [13]. Our
NEON implementation achieved further speedups of up to
29%, 23% and 29% for key generation, encapsulation and
decapsulation, respectively. AMX improves upon NEON
by up to 16%, 19% and 21% for these operations.

• Matrix operations are further sped up due to the reduced
cost of symmetric operations (even more so when A ma-
trix generation is removed). AMX achieves up to 124%
gains over our already improved NEON implementation.

• Our AMX-specific Gaussian sampling technique of §IV-D
achieves gains of up to 417% over NEON.

• Batching amortizes the cost of generating matrix A
across 4 operations and ensures full AMX utilization. Our
NEON implementation improves upon the optimized one
by up to 48%, and AMX improves that further by 90%.
For matrix multiplication only, AMX gains up to 709%.

C. Constant-time behavior of AMX’s genlut instruction

Cryptographic code must run in time independent of secret
data (or constant time) to avoid timing side-channel attacks.
Gazzoni Filho et al. [9] verify this for many AMX instructions,
but not for genlut, used by our sampling method of §IV-D.
We remedy this by benchmarking AMX and NEON sampling

routines for different inputs: 0, 216 − 2, 216 − 1 or random
inputs. The first three map to specific points in the sampling
table: respectively, the first, midpoint and last elements.

We report Frodo-640 results on M3; results for other param-
eter sets and M1 are similar, and are included in the full results
dataset in our GitHub repository. Cycle counts for sampling
the full 8×640 matrix, across all four inputs, vary from 4586
to 4593 (optimized), 4346 to 4349 (NEON) and 839 cycles
(AMX). Thus, modulo small variations across benchmark runs,
all implementations appear to run in constant time.

VI. CONCLUSION AND FUTURE WORK

We have implemented the post-quantum cryptosystems
Saber and FrodoKEM using the undocumented AMX CPU-
coupled matrix multiplication coprocessor, obtaining consid-
erable speedups over CPU-only implementations.

We highlight the difficulties of fully exploiting AMX’s
available processing power. Some strides were made over the
work of Gazzoni Filho et al. [9], by recasting Saber polynomial
multiplication in matrix-multiplication language; still, only
the FireSaber parameter set makes full use of AMX. For
FrodoKEM, a batched implementation is needed to achieve
this goal. Future cryptosystem designs may wish to revisit
parameter choices to favor matrix multiplication accelerators.

We note that the performance of many PQC schemes is
dictated by the cost of symmetric operations, rather than
arithmetic ones such as polynomial/matrix multiplication. To
ensure improvements to the latter are duly reflected in protocol
performance, more research is needed (from design, imple-
mentation and hardware standpoints) into reducing the share of
symmetric operations in the execution time of PQC schemes.

An important class of lattice-based cryptosystems are based
on NTTs, such as Kyber and Dilithium; we echo the suggestion
of [9] to investigate AMX implementations of such schemes.

Table-based sampling is perceived as difficult to implement
efficiently in constant time. Our novel technique of §IV-D,
using AMX’s genlut instruction, brings renewed hope for
such methods; although sampling accounts for a small share
of FrodoKEM’s running time, other schemes may benefit
considerably more. CPU architects would do well to extend
instruction set architectures with a similar instruction.
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